Angular velocity variations and stability of spatially explicit prey-predator systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angular velocity variations and stability of spatially explicit prey-predator systems.

The linear instability of Lotka-Volterra orbits in the homogenous manifold of a two-patch system is analyzed. The origin of these orbits instability in the absence of prey migration is revealed to be the dependence of the angular velocity on the azimuthal angle; in particular, the system desynchronizes at the exit from the slow part of the trajectory. Using this insight, an analogous model of a...

متن کامل

The Stability of Some Systems of Harvested Lotka-Volterra Predator-Prey Equations

Some scientists are interesting to study in area of harvested ecological modelling. The harvested population dynamics is more realistic than other ecological models. In the present paper, some of the Lotka-Volterra predator-prey models have been considered. In the said models, existing species are harvested by constant or variable growth rates. The behavior of their solutions has been analyzed ...

متن کامل

Revisiting the Stability of Spatially Heterogeneous Predator-Prey Systems Under Eutrophication.

We employ partial integro-differential equations to model trophic interaction in a spatially extended heterogeneous environment. Compared to classical reaction-diffusion models, this framework allows us to more realistically describe the situation where movement of individuals occurs on a faster time scale than on the demographic (population) time scale, and we cannot determine population growt...

متن کامل

Stochastic population dynamics in spatially extended predator-prey systems

Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting manyparticle systems beyond rate equation approximations. Including spatial structure ...

متن کامل

Mathematical Modeling and Stability of Predator-Prey Systems

This work investigated the stability of some Lotka-Volterra type models. We used the Liapunov method, which consists in analyzing the stability of systems of ordinary differential equations (ODE's), around the equilibrium, when submitted to perturbations in the initial conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2007

ISSN: 1539-3755,1550-2376

DOI: 10.1103/physreve.75.051914